Excitons versus free charges in organo-lead tri-halide perovskites.

نویسندگان

  • Valerio D'Innocenzo
  • Giulia Grancini
  • Marcelo J P Alcocer
  • Ajay Ram Srimath Kandada
  • Samuel D Stranks
  • Michael M Lee
  • Guglielmo Lanzani
  • Henry J Snaith
  • Annamaria Petrozza
چکیده

Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic perovskites show promise for overcoming such limitations. Here, we use optical spectroscopy to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV. We show that such a value is consistent with almost full ionization of the exciton population under photovoltaic cell operating conditions. However, increasing the total photoexcitation density, excitonic species become dominant, widening the perspective of this material for a host of optoelectronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understan...

متن کامل

Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies

Two-dimensional (2D) layered hybrid organic-inorganic halide perovskite semiconductors form natural "multiple quantum wells" that have strong spin-orbit coupling due to the heavy elements in their building blocks. This may lead to "Rashba splitting" close to the extrema in the electron bands. We have used a plethora of ultrafast transient, nonlinear optical spectroscopies and theoretical calcul...

متن کامل

Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation.

Organo-halide lead perovskites are revolutionizing the photovoltaic scenario, with efficiencies exceeding 15%. The orientational dynamics disorder of the methylammonium cations (MA) is one of the most peculiar features of these materials. Here, we perform ab initio molecular dynamics simulations and IR spectroscopic measurements on lead halide hybrid perovskites to elucidate the rotational moti...

متن کامل

Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation

Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This "crystal-liquid" duality implies that lead halide perovskites belong to phonon glass electron crystals, ...

متن کامل

Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl3) was investigated systematically. Synchrotron X-ray diffraction and Raman experi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014